
Package: mmb (via r-universe)
October 27, 2024

Type Package

Title Arbitrary Dependency Mixed Multivariate Bayesian Models

Version 0.13.3

Author Sebastian Hönel

Maintainer Sebastian Hönel <sebastian.honel@lnu.se>

Description Supports Bayesian models with full and partial (hence
arbitrary) dependencies between random variables. Discrete and
continuous variables are supported, and conditional joint
probabilities and probability densities are estimated using
Kernel Density Estimation (KDE). The full general form, which
implements an extension to Bayes' theorem, as well as the
simple form, which is just a Bayesian network, both support
regression through segmentation and KDE and estimation of
probability or relative likelihood of discrete or continuous
target random variables. This package also provides true
statistical distance measures based on Bayesian models.
Furthermore, these measures can be facilitated on neighborhood
searches, and to estimate the similarity and distance between
data points. Related work is by Bayes (1763)
<doi:10.1098/rstl.1763.0053> and by Scutari (2010)
<doi:10.18637/jss.v035.i03>.

License GPL-3

Encoding UTF-8

URL https://github.com/MrShoenel/R-mmb

BugReports https://github.com/MrShoenel/R-mmb/issues

LazyData true

VignetteBuilder knitr

Suggests devtools, testthat, covr, e1071, caret, knitr, rmarkdown,
ggplot2, ggpubr, cowplot, philentropy, Rtsne

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

1

https://doi.org/10.1098/rstl.1763.0053
https://doi.org/10.18637/jss.v035.i03
https://github.com/MrShoenel/R-mmb
https://github.com/MrShoenel/R-mmb/issues


2 Contents

Imports Rdpack, datasets, stats, foreach, parallel, doParallel

RdMacros Rdpack

Repository https://mrshoenel.r-universe.dev

RemoteUrl https://github.com/mrshoenel/r-mmb

RemoteRef HEAD

RemoteSha b4803f6e22895669abaf42a4a4ae78d39933ee82

Contents
bayesCaret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
bayesComputeMarginalFactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
bayesConvertData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
bayesFeaturesToSample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
bayesInferSimple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
bayesProbability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
bayesProbabilityAssign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
bayesProbabilityNaive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
bayesProbabilitySimple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
bayesRegress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
bayesRegressAssign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
bayesRegressSimple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
bayesToLatex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
centralities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
conditionalDataMin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
createFeatureForBayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
discretizeVariableToRanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
estimatePdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
getDefaultRegressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
getMessages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
getProbForDiscrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
getRangeForDiscretizedValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
getValueKeyOfBayesFeatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
getValueOfBayesFeatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
getWarnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
sampleToBayesFeatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
setDefaultRegressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
setMessages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
setWarnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
vicinities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
vicinitiesForSample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Index 40



bayesCaret 3

bayesCaret Provides a caret-compatible wrapper around functionality for classi-
fication and regression, as implemented by mmb.

Description

A wrapper to be used with the package/function caret::train(). Supports regression and classi-
fication and an extensive default grid.

Usage

bayesCaret

Format

An object of class list of length 7.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

## Not run:
trainIndex <- caret::createDataPartition(

iris$Species, p = .8, list = FALSE, times = 1)
train <- iris[ trainIndex, ]
test <- iris[-trainIndex, ]

fitControl <- caret::trainControl(
method = "repeatedcv", number = 2, repeats = 2)

fit <- caret::train(
Species ~ ., data = train, method = mmb::bayesCaret,
trControl = fitControl)

## End(Not run)

bayesComputeMarginalFactor

Compute a marginal factor (continuous or discrete random variable).

Description

Computes the probability (discrete feature) or relative likelihood (continuous feature) of one given
feature and a concrete value for it.

mailto:sebastian.honel@lnu.se


4 bayesConvertData

Usage

bayesComputeMarginalFactor(df, feature, doEcdf = FALSE)

Arguments

df data.frame that contains all the feature’s data

feature data.frame containing the designated feature as created by @seealso mmb::createFeatureForBayes().

doEcdf default FALSE a boolean to indicate whether to use the empirical CDF to return
a probability when inferencing a continuous feature. If false, uses the empirical
PDF to return the rel. likelihood. This parameter does not have any effect when
inferring discrete values. Using the ECDF, a probability to find a value less than
or equal to the given value is returned.

Value

numeric the probability or likelihood of the given feature assuming its given value.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

feat <- mmb::createFeatureForBayes(
name = "Petal.Length", value = mean(iris$Petal.Length))

mmb::bayesComputeMarginalFactor(df = iris, feature = feat)
mmb::bayesComputeMarginalFactor(df = iris, feature = feat, doEcdf = TRUE)

bayesConvertData Convert data for usage within Bayesian models.

Description

Converts all columns in a data.frame that are factors to character, except for the target column.

Usage

bayesConvertData(df)

Arguments

df data.frame to be used for bayesian inferencing.

Value

the same data.frame with all factors converted to character.

mailto:sebastian.honel@lnu.se


bayesFeaturesToSample 5

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

df <- mmb::bayesConvertData(df = iris)

bayesFeaturesToSample Transform a collection of Bayesian features back to a sample.

Description

Counter operation to @seealso mmb::sampleToBayesFeatures(). Takes a Bayes-feature data.frame
and transforms it back to a row.

Usage

bayesFeaturesToSample(dfOrg, features)

Arguments

dfOrg data.frame containing at least one row of the original format, so that we can
rebuild the sample matching exactly the original column names.

features data.frame of Bayes-features, as for example previously created using mmb::sampleToBayesFeatures().

Value

data.frame the sample as 1-row data.frame.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

samp <- mmb::sampleToBayesFeatures(dfRow = iris[15,], targetCol = "Species")

# Convert the sample (as features) back to a sample that can be, e.g.,
# appended to the data again:
row <- mmb::bayesFeaturesToSample(dfOrg = iris, features = samp)

mailto:sebastian.honel@lnu.se
mailto:sebastian.honel@lnu.se


6 bayesInferSimple

bayesInferSimple Perform simple (network) Bayesian inferencing and regression.

Description

Uses simple Bayesian inference to determine the probability or relative likelihood of a given value.
This function can also regress to the most likely value instead. Simple means that segmented data is
used in a way that is equal to how a Bayesian network works. For a finite set of labels, this function
needs to be called for each, to obtain the probability of each label (or, for n-1 labels or until a label
with >.5 probability is found). For obtaining the probability of a continuous value, this function
is useful for deciding between picking among a finite set of values. The empirical CDF may be
used to obtain an actual probability for a given continuous value, otherwise, the empirical PDF is
estimated and a relative likelihood is returned. For regression, set doRegress = TRUE to obtain the
most likely value of the target feature, instead of obtaining its relative likelihood.

Usage

bayesInferSimple(
df,
features,
targetCol,
selectedFeatureNames = c(),
retainMinValues = 1,
doRegress = FALSE,
doEcdf = FALSE,
regressor = NULL

)

Arguments

df data.frame

features data.frame with bayes-features. One of the features needs to be the label-column.

targetCol string with the name of the feature that represents the label.
selectedFeatureNames

vector default c(). Vector of strings that are the names of the features the to-
predict label depends on. If an empty vector is given, then all of the features are
used (except for the label). The order then depends on the features’ order.

retainMinValues

integer to require a minimum amount of data points when segmenting the data
feature by feature.

doRegress default FALSE a boolean to indicate whether to do a regression instead of re-
turning the relative likelihood of a continuous feature. If the target feature is
discrete and regression is requested, will issue a warning.

doEcdf default FALSE a boolean to indicate whether to use the empirical CDF to return
a probability when inferencing a continuous feature. If false, uses the empirical



bayesProbability 7

PDF to return the rel. likelihood. This parameter does not have any effect when
inferring discrete values or when doing a regression.

regressor Function that is given the collected values for regression and thus finally used
to select a most likely value. Defaults to the built-in estimator for the empirical
PDF and returns its argmax. However, any other function can be used, too, such
as min, max, median, average etc. You may also use this function to obtain
the raw values for further processing. This function is ignored if not doing
regression.

Value

numeric probability (inferring discrete labels) or relative likelihood (regression, inferring likelihood
of continuous value) or most likely value given the conditional features.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

References

Scutari M (2010). “Learning Bayesian Networks with the bnlearn R Package.” Journal of Statisti-
cal Software, 35(3), 1–22. doi:10.18637/jss.v035.i03.

Examples

feat1 <- mmb::createFeatureForBayes(
name = "Petal.Length", value = mean(iris$Petal.Length))

feat2 <- mmb::createFeatureForBayes(
name = "Petal.Width", value = mean(iris$Petal.Width))

featT <- mmb::createFeatureForBayes(
name = "Species", iris[1,]$Species, isLabel = TRUE)

# Infer likelihood of featT's label:
feats <- rbind(feat1, feat2, featT)
mmb::bayesInferSimple(df = iris, features = feats, targetCol = featT$name)

# Infer likelihood of feat1's value:
featT$isLabel = FALSE
feat1$isLabel = TRUE
# We do not bind featT this time:
feats <- rbind(feat1, feat2)
mmb::bayesInferSimple(df = iris, features = feats, targetCol = feat1$name)

bayesProbability Full Bayesian inferencing for determining the probability or relative
likelihood of a given value.

mailto:sebastian.honel@lnu.se
https://doi.org/10.18637/jss.v035.i03


8 bayesProbability

Description

Uses the full extended theorem of Bayes, taking all selected features into account. Expands Bayes’
theorem to accomodate all dependent features, then calculates each conditional probability (or rel-
ative likelihood) and returns a single result reflecting the probability or relative likelihood of the
target feature assuming its given value, given that all the other dependent features assume their
given value. The target feature (designated by ’labelCol’) may be discrete or continuous. If at
least one of the depending features or the the target feature is continuous and the PDF (’doEcdf’ =
FALSE) is built, the result of this function is a relative likelihood of the target feature’s value. If
all of the features are discrete or the empirical CDF is used instead of the PDF, the result of this
function is a probability.

Usage

bayesProbability(
df,
features,
targetCol,
selectedFeatureNames = c(),
shiftAmount = 0.1,
retainMinValues = 1,
doEcdf = FALSE,
useParallel = NULL

)

Arguments

df data.frame that contains all the feature’s data

features data.frame with bayes-features. One of the features needs to be the label-column.

targetCol string with the name of the feature that represents the label.
selectedFeatureNames

vector default c(). Vector of strings that are the names of the features the to-
predict label depends on. If an empty vector is given, then all of the features are
used (except for the label). The order then depends on the features’ order.

shiftAmount numeric an offset value used to increase any one probability (factor) in the full
built equation. In scenarios with many dependencies, it is more likely that a
single conditional probability becomes zero, which would result in the entire
probability being zero. Since this is often useless, the ’shiftAmount’ can be
added to each factor, resulting in a non-zero probability that can at least be used
to order samples by likelihood. Note that, with a positive ’shiftAmount’, the
result of this function cannot be said to be a probability any longer, but rather
results in a comparable likelihood (a ’probability score’).

retainMinValues

integer to require a minimum amount of data points when segmenting the data
feature by feature.

doEcdf default FALSE a boolean to indicate whether to use the empirical CDF to return
a probability when inferencing a continuous feature. If false, uses the empirical
PDF to return the rel. likelihood. This parameter does not have any effect if



bayesProbability 9

all of the variables are discrete or when doing a regression. Otherwise, for each
continuous variable, the probability to find a value less then or equal - given
the conditions - is returned. Note that the interpretation of probability using the
ECDF much deviates and must be used with care, especially since it affects each
factor in Bayes equation that is continuous. This is especially true for the case
where shiftAmount > 0.

useParallel default NULL a boolean to indicate whether to use a previously registered paral-
lel backend. If no explicit value was given, calls foreach::getDoParRegistered()
to check for a parallel backend. When using parallelism, this function calculates
each factor in the numerator and denominator of the final equation in parallel.

Value

numeric probability (inferring discrete labels) or relative likelihood (regression, inferring likeli-
hood of continuous value) or most likely value given the conditional features. If using a positive
shiftAmount, the result is a ’probability score’.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

References

Bayes T (1763). “LII. An essay towards solving a problem in the doctrine of chances. By the
late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S.”
Philosophical transactions of the Royal Society of London, 370–418.

See Also

test-case "a zero denominator can happen"

Examples

feat1 <- mmb::createFeatureForBayes(
name = "Petal.Length", value = mean(iris$Petal.Length))

feat2 <- mmb::createFeatureForBayes(
name = "Petal.Width", value = mean(iris$Petal.Width))

featT <- mmb::createFeatureForBayes(
name = "Species", iris[1,]$Species, isLabel = TRUE)

# Check the probability of Species=setosa, given the other 2 features:
mmb::bayesProbability(

df = iris, features = rbind(feat1, feat2, featT), targetCol = "Species")

# Now check the probability of Species=versicolor:
featT$valueChar <- "versicolor"
mmb::bayesProbability(

df = iris, features = rbind(feat1, feat2, featT), targetCol = "Species")

mailto:sebastian.honel@lnu.se


10 bayesProbabilityAssign

bayesProbabilityAssign

Assign probabilities to one or more samples, given some training data.

Description

This method uses full-dependency (simple=F) Bayesian inferencing to assign a probability to
the target feature in all of the samples given in dfValid. Tests each sample using @seealso
mmb::bayesProbability() or @seealso mmb::bayesProbabilitySimple(). It mostly forwards
the given arguments to these functions, and you will find good documentation there.

Usage

bayesProbabilityAssign(
dfTrain,
dfValid,
targetCol,
selectedFeatureNames = c(),
shiftAmount = 0.1,
retainMinValues = 1,
doEcdf = FALSE,
online = 0,
simple = FALSE,
naive = FALSE,
useParallel = NULL,
returnProbabilityTable = FALSE

)

Arguments

dfTrain data.frame that holds the training data.

dfValid data.frame that holds the validation samples, for each of which a probability is
sought. The convention is, that if you attempt to assign a probability to a numeric
value, it ought to be found in the target column of this data frame (otherwise,
the target column is not required in it).

targetCol character the name of targeted feature, i.e., the feature to assign a probability to.
selectedFeatureNames

character defaults to empty vector which defaults to using all available features.
Use this to select subsets of features and to order features.

shiftAmount numeric an offset value used to increase any one probability (factor) in the full
built equation.

retainMinValues

integer to require a minimum amount of data points when segmenting the data
feature by feature.

doEcdf default FALSE a boolean to indicate whether to use the empirical CDF to return
a probability when inferencing a continuous feature.



bayesProbabilityAssign 11

online default 0 integer to indicate how many rows should be used to do inferencing. If
zero, then only the initially given data.frame dfTrain is used. If > 0, then each
inferenced sample will be attached to it and the resulting data.frame is truncated
to this number. Use an integer large enough (i.e., sum of training and validation
rows) to keep all samples during inferencing. A smaller amount as, e.g., in
dfTrain, will keep the amount of data restricted, discarding older rows. A larger
amount than, e.g., in dfTrain is also fine; dfTrain will grow to it and then discard
rows.

simple default FALSE boolean to indicate whether or not to use simple Bayesian infer-
encing instead of full. This is faster but the results are less good. If true, uses
mmb::bayesProbabilitySimple(). Otherwise, uses mmb::bayesProbability().

naive default FALSE boolean to indicate whether or not to use naive Bayesian infer-
encing instead of full or simple.

useParallel boolean DEFAULT NULL this is forwarded to the underlying function mmb::bayesProbability()
(only in simple=FALSE mode).

returnProbabilityTable

default FALSE boolean to indicate whether to return only the probabilities for
each validation sample or whether a table with a probability for each tested la-
bel should be returned. This has no effect when inferencing probabilities for
numeric values, as the table then only has one column "probability". The first
column of this table is always called "rowname" and corresponds to the row-
names of dfValid.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

References

Bayes T (1763). “LII. An essay towards solving a problem in the doctrine of chances. By the
late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, AMFR S.”
Philosophical transactions of the Royal Society of London, 370–418.

Examples

w <- mmb::getWarnings()
mmb::setWarnings(FALSE)

set.seed(84735)
rn <- base::sample(rownames(iris), 150)
dfTrain <- iris[rn[1:120], ]
dfValid <- iris[rn[121:150], !(colnames(iris) %in% "Species") ]
mmb::bayesProbabilityAssign(dfTrain, dfValid, "Species")

mmb::setWarnings(w)

mailto:sebastian.honel@lnu.se


12 bayesProbabilityNaive

bayesProbabilityNaive Naive Bayesian inferencing for determining the probability or relative
likelihood of a given value.

Description

A complementary implementation using methods common in mmb, such as computing factors or
segmenting data. Supports Laplacian smoothing and early-stopping segmenting, as well as PDF
and CDF and selecting any subset of features for dependency.

Usage

bayesProbabilityNaive(
df,
features,
targetCol,
selectedFeatureNames = c(),
shiftAmount = 0.1,
retainMinValues = 1,
doEcdf = FALSE,
useParallel = NULL

)

Arguments

df data.frame that contains all the feature’s data

features data.frame with bayes-features. One of the features needs to be the label-column.

targetCol string with the name of the feature that represents the label.
selectedFeatureNames

vector default c(). Vector of strings that are the names of the features the to-
predict label depends on. If an empty vector is given, then all of the features are
used (except for the label). The order then depends on the features’ order.

shiftAmount numeric an offset value used to increase any one probability (factor) in the full
built equation. In scenarios with many dependencies, it is more likely that a
single conditional probability becomes zero, which would result in the entire
probability being zero. Since this is often useless, the ’shiftAmount’ can be
added to each factor, resulting in a non-zero probability that can at least be used
to order samples by likelihood. Note that, with a positive ’shiftAmount’, the
result of this function cannot be said to be a probability any longer, but rather
results in a comparable likelihood (a ’probability score’).

retainMinValues

integer to require a minimum amount of data points when segmenting the data
feature by feature.

doEcdf default FALSE a boolean to indicate whether to use the empirical CDF to return
a probability when inferencing a continuous feature. If false, uses the empirical



bayesProbabilitySimple 13

PDF to return the rel. likelihood. This parameter does not have any effect if
all of the variables are discrete or when doing a regression. Otherwise, for each
continuous variable, the probability to find a value less then or equal - given
the conditions - is returned. Note that the interpretation of probability using the
ECDF much deviates and must be used with care, especially since it affects each
factor in Bayes equation that is continuous. This is especially true for the case
where shiftAmount > 0.

useParallel default NULL a boolean to indicate whether to use a previously registered paral-
lel backend. If no explicit value was given, calls foreach::getDoParRegistered()
to check for a parallel backend. When using parallelism, this function calculates
each factor in the numerator and denominator of the final equation in parallel.

Value

numeric probability (inferring discrete labels) or relative likelihood (regression, inferring likeli-
hood of continuous value) or most likely value given the conditional features. If using a positive
shiftAmount, the result is a ’probability score’.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

feat1 <- mmb::createFeatureForBayes(
name = "Petal.Length", value = mean(iris$Petal.Length))

feat2 <- mmb::createFeatureForBayes(
name = "Petal.Width", value = mean(iris$Petal.Width))

featT <- mmb::createFeatureForBayes(
name = "Species", iris[1,]$Species, isLabel = TRUE)

# Check the probability of Species=setosa, given the other 2 features:
mmb::bayesProbabilityNaive(

df = iris, features = rbind(feat1, feat2, featT), targetCol = "Species")

# Now check the probability of Species=versicolor:
featT$valueChar <- "versicolor"
mmb::bayesProbabilityNaive(

df = iris, features = rbind(feat1, feat2, featT), targetCol = "Species")

bayesProbabilitySimple

Assign a probability using a simple (network) Bayesian classifier.

Description

Uses simple Bayesian inference to return the probability or relative likelihood or a discrete label or
continuous value.

mailto:sebastian.honel@lnu.se


14 bayesProbabilitySimple

Usage

bayesProbabilitySimple(
df,
features,
targetCol,
selectedFeatureNames = c(),
retainMinValues = 1,
doEcdf = FALSE

)

Arguments

df data.frame

features data.frame with bayes-features. One of the features needs to be the label-column.

targetCol string with the name of the feature that represents the label.
selectedFeatureNames

vector default c(). Vector of strings that are the names of the features the to-
predict label depends on. If an empty vector is given, then all of the features are
used (except for the label). The order then depends on the features’ order.

retainMinValues

integer to require a minimum amount of data points when segmenting the data
feature by feature.

doEcdf default FALSE a boolean to indicate whether to use the empirical CDF to return
a probability when inferencing a continuous feature. If false, uses the empirical
PDF to return the rel. likelihood.

Value

double the probability of the target-label, using the maximum a posteriori estimate.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

References

Scutari M (2010). “Learning Bayesian Networks with the bnlearn R Package.” Journal of Statisti-
cal Software, 35(3), 1–22. doi:10.18637/jss.v035.i03.

See Also

mmb::bayesInferSimple()

Examples

feat1 <- mmb::createFeatureForBayes(
name = "Sepal.Length", value = mean(iris$Sepal.Length))

feat2 <- mmb::createFeatureForBayes(

mailto:sebastian.honel@lnu.se
https://doi.org/10.18637/jss.v035.i03


bayesRegress 15

name = "Sepal.Width", value = mean(iris$Sepal.Width), isLabel = TRUE)

# Assign a probability to a continuous variable (also works with nominal):
mmb::bayesProbabilitySimple(df = iris, features = rbind(feat1, feat2),

targetCol = feat2$name, retainMinValues = 5, doEcdf = TRUE)

bayesRegress Perform full-dependency Bayesian regression for a sample.

Description

This method performs full-dependency regression by discretizing the continuous target variable into
ranges (buckets), then finding the most probable ranges. It can either regress on the values in the
most likely range or sample from all ranges, according to their likelihood.

Usage

bayesRegress(
df,
features,
targetCol,
selectedFeatureNames = c(),
shiftAmount = 0.1,
retainMinValues = 2,
doEcdf = FALSE,
useParallel = NULL,
numBuckets = ceiling(log2(nrow(df))),
sampleFromAllBuckets = TRUE,
regressor = NULL

)

Arguments

df data.frame that contains all the feature’s data
features data.frame with bayes-features. One of the features needs to be the label-column.
targetCol string with the name of the feature that represents the label.
selectedFeatureNames

vector default c(). Vector of strings that are the names of the features the to-
predict label depends on. If an empty vector is given, then all of the features are
used (except for the label). The order then depends on the features’ order.

shiftAmount numeric an offset value used to increase any one probability (factor) in the full
built equation. In scenarios with many dependencies, it is more likely that a
single conditional probability becomes zero, which would result in the entire
probability being zero. Since this is often useless, the ’shiftAmount’ can be
added to each factor, resulting in a non-zero probability that can at least be used
to order samples by likelihood. Note that, with a positive ’shiftAmount’, the
result of this function cannot be said to be a probability any longer, but rather
results in a comparable likelihood (a ’probability score’).



16 bayesRegress

retainMinValues

integer to require a minimum amount of data points when segmenting the data
feature by feature.

doEcdf default FALSE a boolean to indicate whether to use the empirical CDF to return
a probability when inferencing a continuous feature. If false, uses the empirical
PDF to return the rel. likelihood. This parameter does not have any effect if
all of the variables are discrete or when doing a regression. Otherwise, for each
continuous variable, the probability to find a value less then or equal - given
the conditions - is returned. Note that the interpretation of probability using the
ECDF much deviates and must be used with care, especially since it affects each
factor in Bayes equation that is continuous. This is especially true for the case
where shiftAmount > 0.

useParallel default NULL a boolean to indicate whether to use a previously registered paral-
lel backend. If no explicit value was given, calls foreach::getDoParRegistered()
to check for a parallel backend. When using parallelism, this function calculates
each factor in the numerator and denominator of the final equation in parallel.

numBuckets integer the amount of buckets to for discretization. Buckets are built in an
equidistant manner, not as quantiles (i.e., one bucket has likely a different amount
of values than another).

sampleFromAllBuckets

default TRUE boolean to indicate how to obtain values for regression from the
buckets. If true, than takes values from those buckets with a non-zero probabil-
ity, and according to their probability. If false, selects all values from the bucket
with the highest probability.

regressor Function that is given the collected values for regression and thus finally used
to select a most likely value. Defaults to the built-in estimator for the empirical
PDF and returns its argmax. However, any other function can be used, too, such
as min, max, median, average etc. You may also use this function to obtain the
raw values for further processing.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

w <- mmb::getWarnings()
mmb::setWarnings(FALSE)

df <- iris[, ]
set.seed(84735)
rn <- base::sample(rownames(df), 150)
dfTrain <- df[1:120, ]
dfValid <- df[121:150, ]
tf <- mmb::sampleToBayesFeatures(dfValid[1,], "Sepal.Length")
mmb::bayesRegress(dfTrain, tf, "Sepal.Length")

mmb::setWarnings(w)

mailto:sebastian.honel@lnu.se


bayesRegressAssign 17

bayesRegressAssign Regression for one or more samples, given some training data.

Description

This method uses full-dependency (simple=F) Bayesian inferencing to to a regression for the target
features for all of the samples given in dfValid. Assigns a regression value using either

Usage

bayesRegressAssign(
dfTrain,
dfValid,
targetCol,
selectedFeatureNames = c(),
shiftAmount = 0.1,
retainMinValues = 2,
doEcdf = FALSE,
online = 0,
simple = FALSE,
useParallel = NULL,
numBuckets = ceiling(log2(nrow(df))),
sampleFromAllBuckets = TRUE,
regressor = NULL

)

Arguments

dfTrain data.frame that holds the training data.

dfValid data.frame that holds the validation samples, for each of which a probability is
sought. The convention is, that if you attempt to assign a probability to a numeric
value, it ought to be found in the target column of this data frame (otherwise,
the target column is not required in it).

targetCol character the name of targeted feature, i.e., the feature to assign a probability to.
selectedFeatureNames

character defaults to empty vector which defaults to using all available features.
Use this to select subsets of features and to order features.

shiftAmount numeric an offset value used to increase any one probability (factor) in the full
built equation.

retainMinValues

integer to require a minimum amount of data points when segmenting the data
feature by feature.

doEcdf default FALSE a boolean to indicate whether to use the empirical CDF to return
a probability when inferencing a continuous feature.



18 bayesRegressAssign

online default 0 integer to indicate how many rows should be used to do inferencing. If
zero, then only the initially given data.frame dfTrain is used. If > 0, then each
inferenced sample will be attached to it and the resulting data.frame is truncated
to this number. Use an integer large enough (i.e., sum of training and validation
rows) to keep all samples during inferencing. A smaller amount as, e.g., in
dfTrain, will keep the amount of data restricted, discarding older rows. A larger
amount than, e.g., in dfTrain is also fine; dfTrain will grow to it and then discard
rows.

simple default FALSE boolean to indicate whether or not to use simple Bayesian infer-
encing instead of full. This is faster but the results are less good. If true, uses
mmb::bayesRegressSimple(). Otherwise, uses mmb::bayesRegress().

useParallel boolean DEFAULT NULL this is forwarded to the underlying function mmb::bayesRegress()
(only in simple=FALSE mode).

numBuckets integer the amount of buckets to for discretization. Buckets are built in an
equidistant manner, not as quantiles (i.e., one bucket has likely a different amount
of values than another).

sampleFromAllBuckets

default TRUE boolean to indicate how to obtain values for regression from the
buckets. If true, than takes values from those buckets with a non-zero probabil-
ity, and according to their probability. If false, selects all values from the bucket
with the highest probability.

regressor Function that is given the collected values for regression and thus finally used
to select a most likely value. Defaults to the built-in estimator for the empirical
PDF and returns its argmax. However, any other function can be used, too, such
as min, max, median, average etc. You may also use this function to obtain the
raw values for further processing.#’

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

See Also

mmb::bayesRegress() (full) or @seealso mmb::bayesRegressSimple() if simple=T. It mostly
forwards the given arguments to these functions, and you will find good documentation there.

Examples

df <- iris[, ]
set.seed(84735)
rn <- base::sample(rownames(df), 150)
dfTrain <- df[1:120, ]
dfValid <- df[121:150, ]
res <- mmb::bayesRegressAssign(

dfTrain, dfValid[, !(colnames(dfValid) %in% "Sepal.Length")],
"Sepal.Length", sampleFromAllBuckets = TRUE, doEcdf = TRUE)

cov(res, iris[121:150,]$Sepal.Length)^2

mailto:sebastian.honel@lnu.se


bayesRegressSimple 19

bayesRegressSimple Perform simple (network) Bayesian regression.

Description

Uses simple Bayesian inferencing to segment the data given the conditional features. Then estimates
a density over the remaining values of the target feature and returns the most likely value using a
maximum a posteriori estimate of the kernel (returning its mode).

Usage

bayesRegressSimple(
df,
features,
targetCol,
selectedFeatureNames = c(),
retainMinValues = 2,
regressor = NULL

)

Arguments

df data.frame

features data.frame with bayes-features. One of the features needs to be the label-column
(not required or no value required).

targetCol string with the name of the feature that represents the label (here the target vari-
able for regression).

selectedFeatureNames

vector default c(). Vector of strings that are the names of the features the to-
predict label depends on. If an empty vector is given, then all of the features are
used (except for the label). The order then depends on the features’ order.

retainMinValues

integer to require a minimum amount of data points when segmenting the data
feature by feature.

regressor Function that is given the collected values for regression and thus finally used
to select a most likely value. Defaults to the built-in estimator for the empirical
PDF and returns its argmax. However, any other function can be used, too, such
as min, max, median, average etc. You may also use this function to obtain the
raw values for further processing.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

mailto:sebastian.honel@lnu.se


20 bayesToLatex

References

Scutari M (2010). “Learning Bayesian Networks with the bnlearn R Package.” Journal of Statisti-
cal Software, 35(3), 1–22. doi:10.18637/jss.v035.i03.

See Also

mmb::bayesInferSimple()

Examples

feat1 <- mmb::createFeatureForBayes(
name = "Sepal.Length", value = mean(iris$Sepal.Length))

feat2 <- mmb::createFeatureForBayes(
name = "Sepal.Width", value = mean(iris$Sepal.Width))

# Note how we do not require "Petal.Length" among the features when regressing:
mmb::bayesRegressSimple(df = iris, features = rbind(feat1, feat2),

targetCol = "Petal.Length")

bayesToLatex Create a string that can be used in Latex in an e.g. equation-
environment.

Description

This function can be used to generate Latex-markup that models the full dependency between co-
variates and a target variable.

Usage

bayesToLatex(conditionalFeatures, targetFeature, includeValues = FALSE)

Arguments

conditionalFeatures

data.frame of Bayesian features, the target feature depends on.

targetFeature data.frame that holds exactly one Bayesian feature, that is supposed to be the
target-feture for Bayesian inferencing.

includeValues default FALSE boolean to indicate whether to include the features’ values or
not, i.e. "A" vs. "A = setosa".

Value

a string that can be used in Latex documents.

Note

Use cat() to print a string that can be copy-pasted.

https://doi.org/10.18637/jss.v035.i03


centralities 21

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

feat1 <- mmb::createFeatureForBayes(
name = "Petal.Length", value = mean(iris$Petal.Length))

feat2 <- mmb::createFeatureForBayes(
name = "Petal.Width", value = mean(iris$Petal.Width))

featT <- mmb::createFeatureForBayes(
name = "Species", iris[1,]$Species, isLabel = TRUE)

cat(mmb::bayesToLatex(conditionalFeatures = rbind(feat1, feat2),
targetFeature = featT, includeValues = TRUE))

centralities Given a neighborhood of data, computes the similarity of each sample
in the neighborhood to the neighborhood.

Description

Takes a data.frame of samples, then builds a PDF/PMF or ECDF for each of the selected features.
Then, for each sample, computes the product of probabilities. The result is a vector that holds a
probability for each sample. That probability (or relative likelihood) then represents the vicinity (or
similarity) of the sample to the given neighborhood.

Usage

centralities(
dfNeighborhood,
selectedFeatureNames = c(),
shiftAmount = 0.1,
doEcdf = FALSE,
ecdfMinusOne = FALSE

)

Arguments

dfNeighborhood data.frame that holds all rows that make up the neighborhood.
selectedFeatureNames

vector of names of features to use. The centrality of each row in the neighbor-
hood is calculated based on the selected features.

shiftAmount numeric DEFAULT 0.1 optional amount to shift each features probability by.
This is useful for when the centrality not necessarily must be an actual probabil-
ity and too many features are selected. To obtain actual probabilities, this needs
to be 0, and you must use the ECDF.

mailto:sebastian.honel@lnu.se


22 conditionalDataMin

doEcdf boolean DEFAULT FALSE whether to use the ECDF instead of the EPDF to
find the likelihood of continuous values.

ecdfMinusOne boolean DEFAULT FALSE only has an effect if the ECDF is used. If true, uses
1 minus the ECDF to find the probability of a continuous value. Depending on
the interpretation of what you try to do, this may be of use.

Value

a named vector, where the names correspond to the rownames of the rows in the given neighbor-
hood, and the value is the centrality of that row.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

# Create a neighborhood:
nbh <- mmb::neighborhood(df = iris, features = mmb::createFeatureForBayes(

name = "Sepal.Width", value = mean(iris$Sepal.Width)))

cent <- mmb::centralities(dfNeighborhood = nbh, shiftAmount = 0.1,
doEcdf = TRUE, ecdfMinusOne = TRUE)

# Plot the ordered samples to get an idea of the centralities in the neighborhood:
plot(x = names(cent), y=cent)

conditionalDataMin Segment data according to one or more random variables.

Description

Takes a data.frame and segments it, according to the selected variables. Only rows satisfying all
conditions are kept. Supports discrete and continuous variables. Supports NA, NaN and NULL by
using is.na, is.nan and is.null as comparator.

Usage

conditionalDataMin(
df,
features,
selectedFeatureNames = c(),
retainMinValues = 1

)

mailto:sebastian.honel@lnu.se


conditionalDataMin 23

Arguments

df data.frame with data to segment. If it contains less than or equally many rows
as specified by retainMinValues, then the same data.frame is returned.

features data.frame of bayes-features that are used to segment. Each feature’s value is
used to segment the data, and the features are used in the order as given by
selectedFeatureNames. If those are not given, then the order of this data.frame
is used.

selectedFeatureNames

default c(). Character vector with the names of the variables that shall be used
for segmenting. Segmenting is done variable by variable, and the order depends
on this vector. If this vector is empty, then the originally given data.frame is
returned.

retainMinValues

default 1. The minimum amount of rows to retain. Filtering the data by the
selected features may reduce the amount of remaining rows quickly, and this
can be used as an early stopping criteria. Note that filtering is done variable by
variable, and the amount of remaining rows is evaluated after each segmenting-
step. If the threshold is undercut, then the result from the previous round is
returned.

Value

data.frame that is segmented according to the selected variables and the minimum amount of rows
to retain.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

See Also

getValueKeyOfBayesFeatures()

Examples

feat1 <- mmb::createFeatureForBayes(
name = "Petal.Length", value = mean(iris$Petal.Length))

feat2 <- mmb::createFeatureForBayes(
name = "Petal.Width", value = mean(iris$Petal.Width))

feats <- rbind(feat1, feat2)

data <- mmb::conditionalDataMin(df = iris, features = feats,
selectedFeatureNames = feats$name, retainMinValues = 1)

mailto:sebastian.honel@lnu.se


24 createFeatureForBayes

createFeatureForBayes Create a Bayesian feature by name and value.

Description

Transforms a sample’s feature’s value into a dataframe, that holds its name, type and value. Cur-
rently supports numeric, factor, character and boolean values. Note that factor is internally con-
verted to character.

Usage

createFeatureForBayes(name, value, isLabel = FALSE, isDiscrete = FALSE)

Arguments

name the name of the feature or variable.

value the value of the feature or variable.

isLabel default FALSE. Indicates whether this feature or variable is the target variable
(the label or value to predict).

isDiscrete default FALSE. Used to indicate whether the feature or variable given is discrete.
This will also be set to true if the value given is a charater, factor or a logical.

Value

A data.frame with one row holding all the feature’s value’s properties.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

See Also

sampleToBayesFeatures that uses this function

Examples

feat <- mmb::createFeatureForBayes(
name = "Petal.Width", value = mean(iris$Petal.Width))

featTarget <- mmb::createFeatureForBayes(
name = "Species", iris[1,]$Species, isLabel = TRUE)

mailto:sebastian.honel@lnu.se


discretizeVariableToRanges 25

discretizeVariableToRanges

Discretize a continuous random variable to ranges/buckets.

Description

Discretizes a continuous random variable into buckets (ranges). Each range is delimited by an
exclusive minimum value and an inclusive maximum value.

Usage

discretizeVariableToRanges(
data,
openEndRanges = TRUE,
numRanges = NA,
exclMinVal = NULL,
inclMaxVal = NULL

)

Arguments

data a vector with numeric data

openEndRanges boolean default True. If true, then the minimum value of the first range will
be set to @seealso .Machine$double.xmin and the maximum value of the last
range will be set to @seealso .Machine$double.xmax, so that all values get
covered.

numRanges integer default NA. If NULL, then the amount of ranges (buckets) depends on
the amount of data given. A minimum of two buckets is used then, and a maxi-
mum of ceiling(log2(length(data))).

exclMinVal numeric default NULL. Used to delimit the lower bound of the given data. If
not given, then no value is excluded, as the exclusive lower bound becomes the
minimum of the given data minus an epsilon of 1e-15.

inclMaxVal numeric default NULL. Used to delimit the upper bound of the given data. If
not given, then the upper inclusive bound is the max of the given data.

Value

List a List of vectors, where each vector has two values, the first being the exclusive minimum value
of the range, and the second being the inclusive maximum value of the range. The list will be as
long as the number of buckets requested.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

mailto:sebastian.honel@lnu.se


26 distance

Examples

buckets <- mmb::discretizeVariableToRanges(
data = iris$Sepal.Length, openEndRanges = TRUE)

length(buckets)
buckets[[5]]

distance Given a neighborhood of data and two samples from that neighbor-
hood, calculates the distance between the samples.

Description

The distance of two samples x,y from each other within a given neighborhood is defined as the
absolute value of the subtraction of each sample’s centrality to the neighborhood.

Usage

distance(
dfNeighborhood,
rowNrOfSample1,
rowNrOfSample2,
selectedFeatureNames = c(),
shiftAmount = 0.1,
doEcdf = FALSE,
ecdfMinusOne = FALSE

)

Arguments

dfNeighborhood data.frame that holds all rows that make up the neighborhood.
rowNrOfSample1 character the name of the row that constitutes the first sample from the given

neighborhood.
rowNrOfSample2 character the name of the row that constitutes the second sample from the given

neighborhood.
selectedFeatureNames

vector of names of features to use. The centrality of each row in the neighbor-
hood is calculated based on the selected features.

shiftAmount numeric DEFAULT 0.1 optional amount to shift each features probability by.
This is useful for when the centrality not necessarily must be an actual probabil-
ity and too many features are selected. To obtain actual probabilities, this needs
to be 0, and you must use the ECDF.

doEcdf boolean DEFAULT FALSE whether to use the ECDF instead of the EPDF to
find the likelihood of continuous values.

ecdfMinusOne boolean DEFAULT FALSE only has an effect if the ECDF is used. If true, uses
1 minus the ECDF to find the probability of a continuous value. Depending on
the interpretation of what you try to do, this may be of use.



estimatePdf 27

Value

numeric the distance as a positive number.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

# Show the distance between two samples using all their features:
mmb::distance(dfNeighborhood = iris, rowNrOfSample1 = 10, rowNrOfSample2 = 99)

# Let's use an actual neighborhood:
nbh <- mmb::neighborhood(df = iris, features = mmb::createFeatureForBayes(

name = "Sepal.Length", value = mean(iris$Sepal.Length)))
mmb::distance(dfNeighborhood = nbh, rowNrOfSample1 = 1, rowNrOfSample2 = 30,

selectedFeatureNames = colnames(iris)[1:3])

# Let's compare this to the distances as they are in iris (should be smaller):
mmb::distance(dfNeighborhood = iris, rowNrOfSample1 = 1, rowNrOfSample2 = 30,

selectedFeatureNames = colnames(iris)[1:3])

estimatePdf Safe PDF estimation that works also for sparse random variables.

Description

Given a few observations of a random variable, this function returns an approximation of the PDF
as a function. Returns also the PDF’s support and argmax and works when only zero or one value
was given. Depending on the used density function, two values are often enough to estimate a PDF.

Usage

estimatePdf(
data = c(),
densFun = function(vec) { stats::density(vec, bw = "SJ") }

)

Arguments

data vector of numeric data. Used to compute the empirical density of the data.

densFun function default stats::density with bandwith ’SJ’. Function to compute the
empirical density of a non-empty vector of numerical data. Note that this func-
tion needs to return the properties ’x’ and ’y’ as stats::density does, so that
we can return the argmax.

mailto:sebastian.honel@lnu.se


28 getDefaultRegressor

Value

list with a function that is the empirical PDF using KDE. The list also has two properties ’min’ and
’max’ which represent the integratable range of that function. ’min’ and ’max’ are both zero if not
data (an empty vector) was given. If one data point was given, then they correspond to its value -/+
.Machine$double.eps. The list further contains two numeric vectors ’x’ and ’y’, and a property
’argmax’. If no data was given, ’x’ and ’y’ are zero, and ’argmax’ is NA. If one data points was
given, then ’x’ and ’argmax’ equal it, and ’y’ is set to 1. If two or more data points given, then the
empirical density is estimated and ’x’ and y’ are filled from its estimate. ’argmax’ is then set to that
’x’, where ’y’ becomes max.

Note

If the given vector is empty, warns and returns a constant function that always returns zero for all
values.

If the given vector contains only one observation, then a function is returned that returns 1 iff the
value supplied is the same as the observation. Otherwise, that function will return zero.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

epdf <- mmb::estimatePdf(data = iris$Petal.Width)
print(epdf$argmax)
plot(epdf)

# Get relative likelihood of some values:
epdf$fun(0.5)
epdf$fun(1.7)

getDefaultRegressor Get the system-wide default regressor.

Description

Getting and setting the default regressor affects all functions that have an overridable regressor. If
this is not given, the default has defined here will be obtained.

Usage

getDefaultRegressor()

Value

Function the function used as the regressor. Defaults to function(data) mmb::estimatePdf(data)$argmax.

mailto:sebastian.honel@lnu.se


getMessages 29

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

getMessages Get a boolean indicating whether messages are enabled system-wide.

Description

Getter for the state of messages. Returns true if enabled.

Usage

getMessages()

Value

Boolean to indicate whether messages are enabled or not.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

getProbForDiscrete Get a probability of a discrete value.

Description

Similar to @seealso estimatePdf, this function returns the probability for a discrete value, given
some observations.

Usage

getProbForDiscrete(data, value)

Arguments

data vector of observations that have the same type as the given value.

value a single observation of the same type as the data vector.

Value

the probability of value given data.

mailto:sebastian.honel@lnu.se
mailto:sebastian.honel@lnu.se


30 getRangeForDiscretizedValue

Note

If no observations are given, then this function will warn and return a probability of zero for the
value given. While we could technically return positive infinity, 0 is more suitable in the context of
Bayesian inferencing.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

mmb::getProbForDiscrete(data = c(), value = iris[1,]$Species)
mmb::getProbForDiscrete(data = iris$Species, value = iris[1,]$Species)

getRangeForDiscretizedValue

Get the range-/bucket-ID of a given value.

Description

Given a list of previously computed ranges for a random variable, this function returns the index of
the range the given value belongs to (i.e., in which bucket it belongs). The indexes start R-typically
at 1. Per definition, a value is within a range, if it is larger than the range’s minimum and less than
or equal to its maximum.

Usage

getRangeForDiscretizedValue(ranges, value)

Arguments

ranges list of ranges, as obtained by @seealso discretizeVariableToRanges

value numeric a value drawn from the previously discretized random variable.

Value

integer the index of the range the given value falls into.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

buckets <- mmb::discretizeVariableToRanges(
data = iris$Sepal.Length, openEndRanges = TRUE)

mmb::getRangeForDiscretizedValue(
ranges = buckets, value = mean(iris$Sepal.Length))

mailto:sebastian.honel@lnu.se
mailto:sebastian.honel@lnu.se


getValueKeyOfBayesFeatures 31

getValueKeyOfBayesFeatures

Obtain the type of the value of a Bayesian feature.

Description

Given a data.frame with one or multiple features as constructed by @seealso createFeatureForBayes
and a name, extracts the type of the feature specified by name. Note that this is only used internally.

Usage

getValueKeyOfBayesFeatures(dfFeature, featName)

Arguments

dfFeature a data.frame for a single feature or variable as constructed by @seealso createFeatureForBayes.

featName the name of the feature or variable of which to obtain the type.

Value

the (internal) type of the feature.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

feats <- rbind(
mmb::createFeatureForBayes(

"Petal.Width", value = mean(iris$Petal.Width)),
mmb::createFeatureForBayes(

name = "Species", iris[1,]$Species, isLabel = TRUE)
)

print(mmb::getValueKeyOfBayesFeatures(feats, "Species"))
print(mmb::getValueKeyOfBayesFeatures(feats, "Petal.Width"))

mailto:sebastian.honel@lnu.se


32 getValueOfBayesFeatures

getValueOfBayesFeatures

Obtain the value of a Bayesian feature.

Description

Given a data.frame with one or multiple features as constructed by @seealso createFeatureForBayes
and a name, extracts the value of the feature specified by name.

Usage

getValueOfBayesFeatures(dfFeature, featName)

Arguments

dfFeature a data.frame for a single feature or variable as constructed by @seealso createFeatureForBayes.

featName the name of the feature or variable of which to obtain the value.

Value

the value of the feature.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

feats <- rbind(
mmb::createFeatureForBayes(

"Petal.Width", value = mean(iris$Petal.Width)),
mmb::createFeatureForBayes(

name = "Species", iris[1,]$Species, isLabel = TRUE)
)

print(mmb::getValueOfBayesFeatures(feats, "Species"))
print(mmb::getValueOfBayesFeatures(feats, "Petal.Width"))

mailto:sebastian.honel@lnu.se


getWarnings 33

getWarnings Get a boolean indicating whether warnings are enabled system-wide.

Description

Getter for the state of warnings. Returns true if enabled.

Usage

getWarnings()

Value

Boolean to indicate whether warnings are enabled or not.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

neighborhood Given Bayesian features, returns those samples from a dataset that
exhibit a similarity (i.e., the neighborhood).

Description

The neighborhood Ni is defined as the set of samples that have a similarity greater than zero to
the given sample si. Segmentation is done using equality (==) for discrete features and less than
or equal (<=) for continuous features. Note that feature values NA and NaN are also supported using
is.na() and is.nan().

Usage

neighborhood(df, features, selectedFeatureNames = c(), retainMinValues = 0)

Arguments

df data.frame to select the neighborhood from
features data.frame of Bayes-features, used to segment/select the rows that should make

up the neighborhood.
selectedFeatureNames

vector of names of features to use to demarcate the neighborhood. If empty, uses
all features’ names.

retainMinValues

DEFAULT 0 the amount of samples to retain during segmentation. For sepa-
rating a neighborhood, this value typically should be 0, so that no samples are
included that are not within it. However, for very sparse data or a great amount
of variables, it might still make sense to retain samples.

mailto:sebastian.honel@lnu.se


34 sampleToBayesFeatures

Value

data.frame with rows that were selected as neighborhood. It is guaranteed that the rownames are
maintained.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

nbh <- mmb::neighborhood(df = iris, features = mmb::createFeatureForBayes(
name = "Sepal.Width", value = mean(iris$Sepal.Width)))

print(nrow(nbh))

sampleToBayesFeatures Transform an entire sample into a collection of Bayesian features.

Description

Helper function that takes one sample (e.g., a row of a dataframe with validation data) and trans-
forms it into a data.frame where each row corresponds to one feature (and its value) of the sample.
This is done using @seealso createFeatureForBayes. This operation can be thought of transpos-
ing a matrix.

Usage

sampleToBayesFeatures(dfRow, targetCol)

Arguments

dfRow a row of a data.frame with a value for each feature.
targetCol the name of the feature (column in the data.frame) that is the target variable for

classification or regression.

Value

a data.frame where the first row is the feature that represents the label.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

# Converts all features of iris; the result is a data.frame of length
# equal to the amount of features in iris (5). The first feature is
# targetCol (has isLabel=TRUE).
samp <- mmb::sampleToBayesFeatures(dfRow = iris[15,], targetCol = "Species")

mailto:sebastian.honel@lnu.se
mailto:sebastian.honel@lnu.se


setDefaultRegressor 35

setDefaultRegressor Set a system-wide default regressor.

Description

Getting and setting the default regressor affects all functions that have an overridable regressor. If
this is not given, the default has defined here will be obtained.

Usage

setDefaultRegressor(func)

Arguments

func a Function to use a regressor, should accept one argument, which is a vector of
numeric, and return one value, the regression.

Value

void

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

setMessages Enable or disable messages system-wide.

Description

Setter for enabling or disabling messages. Messages are disabled by default. Use these to enable
high verbosity.

Usage

setMessages(enable = TRUE)

Arguments

enable a boolean to indicate whether to enable messages or not.

Value

Boolean the state of enabled

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

mailto:sebastian.honel@lnu.se
mailto:sebastian.honel@lnu.se


36 vicinities

setWarnings Enable or disable warnings system-wide.

Description

Setter for enabling or disabling warnings. Warnings are enabled by default.

Usage

setWarnings(enable = TRUE)

Arguments

enable a boolean to indicate whether to enable warnings or not.

Value

Boolean the state of enabled

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

vicinities Segment a dataset by each row once, then compute vicinities of sam-
ples in the neighborhood.

Description

Given an entire dataset, uses each instance in it to demarcate a neighborhood using the selected fea-
tures. Then, for each neighborhood, the vicinity of all samples to it is computed. The result of this
is an N x N matrix, where the entry mi,j corresponds to the vicinity of sample sj in neighborhood
Ni.

Usage

vicinities(
df,
selectedFeatureNames = c(),
shiftAmount = 0.1,
doEcdf = FALSE,
ecdfMinusOne = FALSE,
retainMinValues = 0,
useParallel = NULL

)

mailto:sebastian.honel@lnu.se


vicinities 37

Arguments

df data.frame to compute the matrix of vicinites for.
selectedFeatureNames

vector of names of features to use for computing the vicinity/centrality of each
sample to each neighborhood.

shiftAmount numeric DEFAULT 0.1 optional amount to shift each features probability by.
This is useful for when the centrality not necessarily must be an actual probabil-
ity and too many features are selected. To obtain actual probabilities, this needs
to be 0, and you must use the ECDF.

doEcdf boolean DEFAULT FALSE whether to use the ECDF instead of the EPDF to
find the likelihood of continuous values.

ecdfMinusOne boolean DEFAULT FALSE only has an effect if the ECDF is used. If true, uses
1 minus the ECDF to find the probability of a continuous value. Depending on
the interpretation of what you try to do, this may be of use.

retainMinValues

DEFAULT 0 the amount of samples to retain during segmentation. For sepa-
rating a neighborhood, this value typically should be 0, so that no samples are
included that are not within it. However, for very sparse data or a great amount
of variables, it might still make sense to retain samples.

useParallel boolean DEFAULT NULL whether to use parallelism or not. Setting this to
true requires also having previously registered a parallel backend. If parallel
computing is enabled, then each neighborhood is computed separately.

Value

matrix of length N2 (N being the length of the data.frame). Each row i demarcates the neighborhood
as selected by sample i, and each column j then is the vicinity of sample sj to that neighborhood.
No value of the diagonal is zero, because each neighborhood always contains the sample it was
demarcated by, and that sample has a similarity greater than zero to it.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

See Also

vicinitiesForSample()

Examples

w <- mmb::getWarnings()
mmb::setWarnings(FALSE)
mmb::vicinities(df = iris[1:10,])

# Run the same, but use the ECDF and retain more values:
mmb::vicinities(df = iris[1:10,], doEcdf = TRUE, retainMinValues = 10)
mmb::setWarnings(w)

mailto:sebastian.honel@lnu.se


38 vicinitiesForSample

vicinitiesForSample Segment a dataset by a single sample and compute vicinities for it and
the remaining samples in the neighborhood.

Description

Given some data and one sample si from it, constructs the neighborhood Ni of that sample and as-
signs centralities to all other samples in that neighborhood to it. Samples that lie outside the neigh-
borhood are assigned a vicinity of zero. Uses mmb::neighborhood() and mmb::centralities().

Usage

vicinitiesForSample(
df,
sampleFromDf,
selectedFeatureNames = c(),
shiftAmount = 0.1,
doEcdf = FALSE,
ecdfMinusOne = FALSE,
retainMinValues = 0

)

Arguments

df data.frame that holds the data (and also the sample to use to define the neighbor-
hood). Each sample in this data.frame is assigned a vicinity.

sampleFromDf data.frame a single row from the given data.frame. This is used to select a
neighborhood from the given data.

selectedFeatureNames

vector of names of features to use to compute the vicinity/centrality. This is
passed to mmb::neighborhood().

shiftAmount numeric DEFAULT 0.1 optional amount to shift each features probability by.
This is useful for when the centrality not necessarily must be an actual probabil-
ity and too many features are selected. To obtain actual probabilities, this needs
to be 0, and you must use the ECDF.

doEcdf boolean DEFAULT FALSE whether to use the ECDF instead of the EPDF to
find the likelihood of continuous values.

ecdfMinusOne boolean DEFAULT FALSE only has an effect if the ECDF is used. If true, uses
1 minus the ECDF to find the probability of a continuous value. Depending on
the interpretation of what you try to do, this may be of use.

retainMinValues

DEFAULT 0 the amount of samples to retain during segmentation. For sepa-
rating a neighborhood, this value typically should be 0, so that no samples are
included that are not within it. However, for very sparse data or a great amount
of variables, it might still make sense to retain samples.



vicinitiesForSample 39

Value

data.frame with a single column ’vicinity’ and the same rownames as the given data.frame. Each
row then holds the vicinity for the corresponding row.

Author(s)

Sebastian Hönel sebastian.honel@lnu.se

Examples

vic <- mmb::vicinitiesForSample(
df = iris, sampleFromDf = iris[1,], shiftAmount = 0.1)

vic$vicinity

# Plot the ordered samples to get an idea which ones have a vicinity > 0
plot(x=rownames(vic), y=vic$vicinity)

mailto:sebastian.honel@lnu.se


Index

∗ classification
bayesProbability, 7
bayesProbabilityAssign, 10
bayesProbabilityNaive, 12

∗ datasets
bayesCaret, 3

∗ density-estimation
estimatePdf, 27

∗ discretization
discretizeVariableToRanges, 25
getRangeForDiscretizedValue, 30

∗ feature
bayesFeaturesToSample, 5
createFeatureForBayes, 24
getValueKeyOfBayesFeatures, 31
getValueOfBayesFeatures, 32
sampleToBayesFeatures, 34

∗ full-dependency
bayesProbability, 7
bayesProbabilityAssign, 10
bayesRegress, 15
bayesRegressAssign, 17

∗ inferencing
bayesInferSimple, 6
bayesProbability, 7
bayesProbabilityAssign, 10
bayesProbabilityNaive, 12
bayesProbabilitySimple, 13

∗ likelihood
estimatePdf, 27
getProbForDiscrete, 29

∗ naive
bayesProbabilityNaive, 12

∗ network
centralities, 21
distance, 26
neighborhood, 33
vicinities, 36
vicinitiesForSample, 38

∗ probability
getProbForDiscrete, 29

∗ regression
bayesInferSimple, 6
bayesRegress, 15
bayesRegressAssign, 17
bayesRegressSimple, 19

∗ segmentation
conditionalDataMin, 22

∗ simple
bayesInferSimple, 6
bayesProbabilitySimple, 13
bayesRegressSimple, 19

bayesCaret, 3
bayesComputeMarginalFactor, 3
bayesConvertData, 4
bayesFeaturesToSample, 5
bayesInferSimple, 6
bayesProbability, 7
bayesProbabilityAssign, 10
bayesProbabilityNaive, 12
bayesProbabilitySimple, 13
bayesRegress, 15
bayesRegressAssign, 17
bayesRegressSimple, 19
bayesToLatex, 20

centralities, 21
conditionalDataMin, 22
createFeatureForBayes, 24

discretizeVariableToRanges, 25
distance, 26

estimatePdf, 27

getDefaultRegressor, 28
getMessages, 29
getProbForDiscrete, 29
getRangeForDiscretizedValue, 30

40



INDEX 41

getValueKeyOfBayesFeatures, 31
getValueOfBayesFeatures, 32
getWarnings, 33

neighborhood, 33

sampleToBayesFeatures, 34
setDefaultRegressor, 35
setMessages, 35
setWarnings, 36

vicinities, 36
vicinitiesForSample, 38


	bayesCaret
	bayesComputeMarginalFactor
	bayesConvertData
	bayesFeaturesToSample
	bayesInferSimple
	bayesProbability
	bayesProbabilityAssign
	bayesProbabilityNaive
	bayesProbabilitySimple
	bayesRegress
	bayesRegressAssign
	bayesRegressSimple
	bayesToLatex
	centralities
	conditionalDataMin
	createFeatureForBayes
	discretizeVariableToRanges
	distance
	estimatePdf
	getDefaultRegressor
	getMessages
	getProbForDiscrete
	getRangeForDiscretizedValue
	getValueKeyOfBayesFeatures
	getValueOfBayesFeatures
	getWarnings
	neighborhood
	sampleToBayesFeatures
	setDefaultRegressor
	setMessages
	setWarnings
	vicinities
	vicinitiesForSample
	Index

